5w^2+35=125

Simple and best practice solution for 5w^2+35=125 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5w^2+35=125 equation:



5w^2+35=125
We move all terms to the left:
5w^2+35-(125)=0
We add all the numbers together, and all the variables
5w^2-90=0
a = 5; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·5·(-90)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*5}=\frac{0-30\sqrt{2}}{10} =-\frac{30\sqrt{2}}{10} =-3\sqrt{2} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*5}=\frac{0+30\sqrt{2}}{10} =\frac{30\sqrt{2}}{10} =3\sqrt{2} $

See similar equations:

| 50/r=10 | | 34=160-y | | 2.5d2d+4=10+2.5d2, | | 37−h=34 | | 3.2x−1.07=2.77 | | 5x+2+3x=10 | | -x+27=190 | | 2.7x−9.8=15.2 | | 34×13-88+x=408 | | 9(140-x)=x81 | | t/7+15=21 | | -7x+5=-3+2x | | 220=40-v | | t7+15=21 | | 48=-16t2+64t | | 6(x+2=66 | | 4m-8=-24 | | 12x+3-4x-3=5x | | -2a-5=3 | | y=110000(150)^2 | | 4(2=3c)+56 | | 2c−5=3 | | y=110000(.015)5 | | -(10-x)=3((x+4) | | 7/4u=21 | | 5/3x+1/3x=14+2/3+8/3x | | 3/x=83/7 | | y=1200(.85)^5.6 | | y=1200(.85)^5.5 | | y=1200(.85)^6 | | y=1200(.85)^5 | | y=1200(.85)^4 |

Equations solver categories